根据国家网信办相关规定和要求,《计算机应用研究》编辑部网站域名更换为arocmag.cn,原域名 arocmag.com 将于2024年12月31日后停用。

基于CGDNN的低信噪比自动调制识别方法

Low signal-to-noise ratio automatic modulation recognition method based on CGDNN
周顺勇a,b
陆欢a,b
胡琴a,b
彭梓洋a,b
张航领a,b
四川轻化工大学 a. 自动化与信息工程学院; b. 人工智能四川省重点实验室, 四川 宜宾 644000

摘要

针对非协作通信环境中,自动调制识别(automatic modulation recognition,AMR)在低信噪比下泛化能力有限、分类精度不高的问题,提出一种由卷积神经网络、门控循环单元和深度神经网络组成的模型—CGDNN(convolutional gated recurrent units deep neural networks)。首先对I/Q采样信号进行小波阈值去噪,降低噪声对信号调制识别的影响;然后用CNN和GRU提取信号空间和时间特征;最后,通过全连接层进行识别分类。与其他模型对比,验证CGDNN模型在提高AMR性能的同时,显著降低了计算复杂度。实验结果显示,CGDNN模型在RML2016.10b数据集上的平均识别准确率达到了64.32%,提高了-12 dB~0 dB的信号分类精度,该模型大幅减少了16QAM与64QAM的混淆程度,在18 dB时达到了93.9%的最高识别准确率。CGDNN模型既提高了低信噪比下AMR的识别准确率,也提高了模型训练的效率。

基金项目

国家自然科学基金资助项目(61801319)
四川省科技厅省院省校重点项目(2020YFSY0027)
四川轻化工大学研究生创新基金资助项目(Y2023314,Y2023290)
四川轻化工大学留学归国项目(2023RC24)

出版信息

DOI: 10.19734/j.issn.1001-3695.2023.11.0581
出版期卷: 《计算机应用研究》 印刷出版, 2024年第41卷 第8期
所属栏目: 网络与通信技术
出版页码: 2489-2495
文章编号: 1001-3695(2024)08-034-2489-07

发布历史

[2024-02-06] 优先出版
[2024-08-05] 印刷出版

引用本文

周顺勇, 陆欢, 胡琴, 等. 基于CGDNN的低信噪比自动调制识别方法 [J]. 计算机应用研究, 2024, 41 (8): 2489-2495. (Zhou Shunyong, Lu Huan, Hu Qin, et al. Low signal-to-noise ratio automatic modulation recognition method based on CGDNN [J]. Application Research of Computers, 2024, 41 (8): 2489-2495. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊