根据国家网信办相关规定和要求,《计算机应用研究》编辑部网站域名更换为arocmag.cn,原域名 arocmag.com 将于2024年12月31日后停用。

面向类不平衡和重叠的工控数据异常检测的半监督欠采样方法

Semi-supervised under-sampling method for anomaly detection of industrial control data with class imbalance and overlap
顾兆军a
扬雪影a,b
隋翯c
张一诺a,b
中国民航大学 a. 信息安全中心; b. 计算机科学与技术学院; c. 航空工程学院, 天津 300300

摘要

工业控制系统异常检测面临着数据缺乏标签信息、类不平衡和类重叠的耦合问题,导致现有的分类器难以精准检测异常数据。现有的数据级采样方法在打伪标签、数据平衡或检测重叠区域时存在着打伪标签结果不准确、采样效果稳定性差以及重叠识别率低等问题。为此,提出一种基于半监督学习的欠采样方法(SSLU-LP)。该方法通过异构集成将标签传播机制和单类分类器结合,补充数据伪标签;利用最小生成树策略构建重叠区域检测模型;采用欠采样策略,通过最近邻搜索有选择性地去除部分多数类样本。最后该方法与四种经典分类器结合,在九个工控数据集上与九种混合算法进行比较。实验结果表明,所提方法可以精准地为无标签数据打伪标签,高效且有效检测出不平衡数据集中的重叠数据,改善了分类器的训练效果,提高了分类器的异常检测性能。

基金项目

国家自然科学基金资助项目(U2333201)

出版信息

DOI: 10.19734/j.issn.1001-3695.2024.06.0195
出版期卷: 《计算机应用研究》 印刷出版, 2025年第42卷 第1期
所属栏目: 算法研究探讨
出版页码: 156-164
文章编号: 1001-3695(2025)01-022-0156-09

发布历史

[2025-01-05] 印刷出版

引用本文

顾兆军, 扬雪影, 隋翯, 等. 面向类不平衡和重叠的工控数据异常检测的半监督欠采样方法 [J]. 计算机应用研究, 2025, 42 (1): 156-164. (Gu Zhaojun, Yang Xueying, Sui He, et al. Semi-supervised under-sampling method for anomaly detection of industrial control data with class imbalance and overlap [J]. Application Research of Computers, 2025, 42 (1): 156-164. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊