基于改进人工蜂鸟算法的装船调度优化方法
Artificial hummingbird algorithm with mixed multiple strategies
燕山大学 a. 信息科学与工程学院; b. 河北省软件工程重点实验室; c. 河北省网络感知与大数据工程研究中心; d. 经济管理学院, 河北 秦皇岛 066004

摘要
为提升散杂货进出港作业效率,减少船舶在港时间,提出一种基于改进人工蜂鸟算法的装船调度优化方法。首先,在综合考虑泊位、装船设备和堆场三部分因素相互影响的条件下,以船舶总在港时间为优化目标,构建协同调度优化模型。然后,鉴于人工蜂鸟算法在求解离散问题的局限性,对人工蜂鸟算法进行离散化改造,进而提出一种改进型人工蜂鸟算法,引入自适应飞行参数控制蜂鸟个体的飞行方式,同时通过改进最优个体引导策略优化AHA的位置更新过程,进一步平衡 AHA的全局探索与局部开发能力。为了进一步增强算法避免局部最优解的能力,本文引入了变异策略调整和优化蜂鸟的位置。最后,通过在基准测试函数的基础上进行有效性实验,并与其他群智能优化算法对比实验,验证改进算法的寻优性能。进一步通过对散杂货港口的历史数据进行测试,采用改进算法进行求解计算,并与基础的人工蜂鸟算法进行了比较,实验结果表明该策略缩短了船舶的在港时间。该研究能够得出相对较优的调度方案,为港口船舶优化调度提供新方案,有一定的实际意义。
基金项目
国家自然科学基金资助项目(61672448)
河北省自然科学基金资助项目(F2023203058,F2022203045)
河北省软件工程重点实验室项目(2256763H)
河北省科学技术研究与发展计划-重点研发计划(22310301D)
出版信息
DOI: 10.19734/j.issn.1001-3695.2024.09.0360
出版期卷: 《计算机应用研究》 优先出版, 2025年第42卷 第5期
发布历史
[2025-03-06] 优先出版
引用本文
刘文远, 周如意, 厉斌斌. 基于改进人工蜂鸟算法的装船调度优化方法 [J]. 计算机应用研究, 2025, 42 (5). (2025-03-06). https://doi.org/10.19734/j.issn.1001-3695.2024.09.0360. (Liu Wenyuan, Zhou Ruyi, Li Binbin. Artificial hummingbird algorithm with mixed multiple strategies [J]. Application Research of Computers, 2025, 42 (5). (2025-03-06). https://doi.org/10.19734/j.issn.1001-3695.2024.09.0360. )
关于期刊

- 计算机应用研究 月刊
- Application Research of Computers
-
刊号
ISSN 1001-3695
CN 51-1196/TP
《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。
《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。
《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。
收录和评价
- 第二届国家期刊奖百种重点期刊
- 中国期刊方阵双效期刊
- 全国中文核心期刊(北大2023年版)
- 中国科技核心期刊
- 中国科学引文数据库(CSCD)来源期刊
- RCCSE中国核心学术期刊
- 中国计算机学会会刊
- 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
- 中国科技期刊精品数据库全文来源期刊
- 中国学术期刊综合评价数据库来源期刊
- 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
- 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
- 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
- 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
- 英国《科学文摘》(INSPEC)来源期刊
- 《日本科学技术振兴机构数据库》(JST)来源期刊
- 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
- 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
- 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
- 波兰《哥白尼索引》(IC)来源期刊
- 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊