根据国家网信办相关规定和要求,《计算机应用研究》编辑部网站域名更换为arocmag.cn,原域名 arocmag.com 自2025年1月1日起自动跳转到新域名。
基于人工智能的趋势预测专题
|
381-390

基于分量感知动态图Transformer的短期电力负荷预测

Short-term power load forecasting based on component-aware dynamic graph Transformer
朱莉1
高靖凯1
朱春强2,3
邓凡1
1. 西安科技大学 计算机科学与技术学院, 西安 710054
2. 西安交通大学 计算机科学与技术学院, 西安 710049
3. 国网陕西省电力公司培训中心, 西安 710032

摘要

准确的短期负荷预测对于电力系统的稳定运行和有效调度至关重要。电力负荷数据因存在非线性、非平稳性而导致预测精度低。分解可以降低序列非平稳性的影响从而有效地提高预测精度,但现有分解预测方法缺乏对分解分量间关系的捕获且显著增加了预测时间。为此,提出分量感知动态图Transformer(componentaware dynamic graph Transformer,CDGT)模型。首先,引入联合对立选择(joint opposite selection,JOS)算子和随机扰动改进雪消融优化算法(snow ablation optimizer,SAO),使用联合搜索和随机扰动的SAO(jointly searched and stochastic perturbed SAO,JSSAO)对变分模态分解(variational mode decomposition,VMD)进行参数寻优。VMD对原始的负荷数据进行分解得到不同频率的分量序列,然后使用图神经网络(graph neural network,GNN)来识别和建模分量之间的复杂关系。同时,使用引入频域指数滑动平均(exponential moving average,EMA)注意力的Transformer来学习分量内部的依赖关系。一次输出所有分量结果,线性相加后得到负荷预测值。通过两个公开负荷数据集的实验表明,CDGT优于一系列先进的基线以及分解预测方法,在澳大利亚数据集和摩洛哥数据集上,MAE分别降低了5.51%~31.08%和15.02%~75.49%。

基金项目

国网陕西省电力有限公司科技项目(5226PX240003)
国网陕西电力有限公司数字化项目(B326PX230001,B326PX230000)
陕西省自然科学基础研究项目(2022JM317)

出版信息

DOI: 10.19734/j.issn.1001-3695.2024.07.0231
出版期卷: 《计算机应用研究》 印刷出版, 2025年第42卷 第2期
所属栏目: 基于人工智能的趋势预测专题
出版页码: 381-390
文章编号: 1001-3695(2025)02-008-0381-10

发布历史

[2025-02-05] 印刷出版

引用本文

朱莉, 高靖凯, 朱春强, 等. 基于分量感知动态图Transformer的短期电力负荷预测 [J]. 计算机应用研究, 2025, 42 (2): 381-390. (Zhu Li, Gao Jingkai, Zhu Chunqiang, et al. Short-term power load forecasting based on component-aware dynamic graph Transformer [J]. Application Research of Computers, 2025, 42 (2): 381-390. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊