基于匹配的模型卸载边缘联邦学习方法
Match-based model offloading for edge federated learning
湖州师范学院 信息工程学院, 浙江 湖州 313000
摘要
针对边缘计算环境下联邦学习中因资源异质性导致的“滞后者”效应等问题,提出基于匹配的模型卸载边缘联邦学习方法(Fed-MBMO)。该方法通过收集边缘设备的性能分析结果,将设备分别划分为强、弱客户端,考虑了模型训练的四个阶段时间占比,弱客户端通过冻结部分模型以节省在特征层上反向传播的时间,并将模型卸载至“强客户端”进行额外的训练,最后将强客户端模型的特征层与弱客户端的全连接层进行模型重构。为提高模型卸载效率,综合考虑模型特征层的相似度与任务完成时间构建了卸载成本矩阵,并将问题转换为迭代求解基于二部图的最优匹配问题,提出基于Kuhn-Munkres(KM)的模型卸载算法并进一步分析了Fed-MBMO算法的时间复杂度。实验结果表明,在资源与数据极端异质的情况下,该方法能够加速模型收敛,模型训练时间与FedAvg、FedUE和Aergia相比分别平均减少46.65%、12.66%、38.07%。实验结果证明了所提的Fed-MBMO算法能够有效解决“滞后者”效应问题并显著提高联邦学习效率。
基金项目
湖州市科技计划重点研发资助项目(2022ZD2002)
出版信息
DOI: 10.19734/j.issn.1001-3695.2024.06.0199
出版期卷: 《计算机应用研究》 印刷出版, 2025年第42卷 第1期
所属栏目: 算法研究探讨
出版页码: 139-148
文章编号: 1001-3695(2025)01-020-0139-10
发布历史
[2025-01-05] 印刷出版
引用本文
顾永跟, 张吕基, 吴小红, 等. 基于匹配的模型卸载边缘联邦学习方法 [J]. 计算机应用研究, 2025, 42 (1): 139-148. (Gu Yonggen, Zhang Lyuji, Wu Xiaohong, et al. Match-based model offloading for edge federated learning [J]. Application Research of Computers, 2025, 42 (1): 139-148. )
关于期刊
- 计算机应用研究 月刊
- Application Research of Computers
-
刊号
ISSN 1001-3695
CN 51-1196/TP
《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。
《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。
《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。
收录和评价
- 第二届国家期刊奖百种重点期刊
- 中国期刊方阵双效期刊
- 全国中文核心期刊(北大2023年版)
- 中国科技核心期刊
- 中国科学引文数据库(CSCD)来源期刊
- RCCSE中国核心学术期刊
- 中国计算机学会会刊
- 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
- 中国科技期刊精品数据库全文来源期刊
- 中国学术期刊综合评价数据库来源期刊
- 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
- 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
- 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
- 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
- 英国《科学文摘》(INSPEC)来源期刊
- 《日本科学技术振兴机构数据库》(JST)来源期刊
- 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
- 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
- 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
- 波兰《哥白尼索引》(IC)来源期刊
- 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊