根据国家网信办相关规定和要求,《计算机应用研究》编辑部网站域名更换为arocmag.cn,原域名 arocmag.com 将于2024年12月31日后停用。

融合Bi-LSTM与多头注意力的分层强化学习推理方法

Hierarchical reinforcement learning knowledge reasoning method integrating Bi-LSTM and multi-head attention
李卫军a,b
刘世侠a
刘雪洋a
丁建平a
苏易礌a
王子怡a
北方民族大学 a. 计算机科学与工程学院; b. 图形图像智能处理国家民委重点实验室, 银川 750021

摘要

知识推理作为知识图谱补全中一项重要任务,受到了学术界的广泛关注。针对知识推理可解释性差、不能利用隐藏语义信息和奖励稀疏的问题提出了一种融合Bi-LSTM与多头注意力机制的分层强化学习方法。将知识图谱通过谱聚类分簇,使智能体分别在簇与实体间进行推理,利用Bi-LSTM与多头注意力机制融合模块对智能体的历史信息进行处理,可以更有效地发现和利用知识图谱隐藏的语义信息。Hight智能体通过分层策略网络选择目标实体所在的簇,指导Low智能体进行实体间的推理。利用强化学习智能体可以有效地解决可解释性差的问题,并通过相互奖励机制对两个智能体的动作选择以及搜索路径给予奖励,以解决智能体奖励稀疏的问题。在FB15K-237、WN18RR、NELL-995三个公开数据集上的实验结果表明,提出的方法能够捕捉序列数据中的长期依赖关系对长路径进行推理,并且在推理任务中的性能优于同类方法。

基金项目

宁夏高等学校科学研究项目(NYG2024086)
宁夏自然科学基金资助项目(2021AAC03215)
中央高校科研资助项目(2022PT_S04,2021JCYJ12)
国家自然科学基金资助项目(62066038,61962001)

出版信息

DOI: 10.19734/j.issn.1001-3695.2024.06.0197
出版期卷: 《计算机应用研究》 印刷出版, 2025年第42卷 第1期
所属栏目: 算法研究探讨
出版页码: 71-77
文章编号: 1001-3695(2025)01-010-0071-07

发布历史

[2025-01-05] 印刷出版

引用本文

李卫军, 刘世侠, 刘雪洋, 等. 融合Bi-LSTM与多头注意力的分层强化学习推理方法 [J]. 计算机应用研究, 2025, 42 (1): 71-77. (Li Weijun, Liu Shixia, Liu Xueyang, et al. Hierarchical reinforcement learning knowledge reasoning method integrating Bi-LSTM and multi-head attention [J]. Application Research of Computers, 2025, 42 (1): 71-77. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊