求解外卖配送问题的深度强化学习算法
Deep reinforcement learning approach for solving takeout delivery problem
上海理工大学 管理学院, 上海 200093
摘要
以最小化骑手费用效益比为优化目标,采用最小比率旅行商问题对外卖配送问题进行建模。针对目前算法在求解该问题时计算精度低、算法稳定性差等问题,设计一种基于深度强化学习的DRL-MFA算法。首先,定义外卖配送问题的马尔可夫决策模型来模拟智能体与环境的交互过程;其次,在编码阶段设计多特征聚合嵌入子层,实现特征间的优势互补并提高模型对非线性问题的建模能力;最后,在解码阶段通过注意力机制和指针网络计算解的概率分布,采用策略梯度算法对网络模型进行训练。通过经典算例和长春市仿真案例的相关实验分析,结果表明该算法能够有效地求解外卖配送问题,且与其他启发式算法相比,具有更高的稳定性和求解精度。此外,进行参数灵敏度实验,考虑不同定价策略对外卖配送的影响,使研究结果更具现实意义。
基金项目
教育部人文社会科学研究青年基金资助项目(21YJC630087)
出版信息
DOI: 10.19734/j.issn.1001-3695.2024.05.0179
出版期卷: 《计算机应用研究》 印刷出版, 2025年第42卷 第1期
所属栏目: 算法研究探讨
出版页码: 205-213
文章编号: 1001-3695(2025)01-028-0205-09
发布历史
[2025-01-05] 印刷出版
引用本文
张旭阳, 刘勇, 马良. 求解外卖配送问题的深度强化学习算法 [J]. 计算机应用研究, 2025, 42 (1): 205-213. (Zhang Xuyang, Liu Yong, Ma Liang. Deep reinforcement learning approach for solving takeout delivery problem [J]. Application Research of Computers, 2025, 42 (1): 205-213. )
关于期刊
- 计算机应用研究 月刊
- Application Research of Computers
-
刊号
ISSN 1001-3695
CN 51-1196/TP
《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。
《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。
《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。
收录和评价
- 第二届国家期刊奖百种重点期刊
- 中国期刊方阵双效期刊
- 全国中文核心期刊(北大2023年版)
- 中国科技核心期刊
- 中国科学引文数据库(CSCD)来源期刊
- RCCSE中国核心学术期刊
- 中国计算机学会会刊
- 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
- 中国科技期刊精品数据库全文来源期刊
- 中国学术期刊综合评价数据库来源期刊
- 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
- 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
- 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
- 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
- 英国《科学文摘》(INSPEC)来源期刊
- 《日本科学技术振兴机构数据库》(JST)来源期刊
- 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
- 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
- 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
- 波兰《哥白尼索引》(IC)来源期刊
- 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊