基于EMO-GAN的恶意URL检测框架
Malicious URL detection framework based on EMO-GAN
1. 山西大学 a. 自动化与软件学院; b. 计算机与信息技术学院, 太原 030006
2. 山西清众科技股份有限公司, 太原 030000

摘要
随着万维网的广泛应用和网络威胁的日益严峻,统一资源定位符(uniform resource locator,URL)的安全性成为了网络安全领域的研究热点,如何有效检测并防范恶意URL已经成为了业内非常关注的问题。针对恶意URL检测中存在的数据获取困难、特征表示不足以及模型概念漂移挑战,提出了一种基于EMO-GAN的恶意URL检测框架(EMO-GAN-based malicious URL detection framework,EMO-GANUDF)。该框架通过结合极度随机树(extremely randomized trees,ET)和边缘生成对抗网络(margin generative adversarial network,MarginGAN)进行半监督学习,有效解决了数据获取困难问题。在特征提取上,该框架提出了一种综合统计、字符和词汇特征的特征表示方法,实现了URL的高效特征表示。此外,为了应对模型概念漂移问题,该框架提出了一种支持在线学习(online learning)的分类器,增强了模型拓展性和适应性。在多个数据集和不同检测方法上进行对比实验,所提方法在Malicious URLs公开数据集上达到了99%的准确率和84%的F1分数,较其他检测方法取得了更好的效果,证明了其有效性及优越性。
基金项目
国家自然科学基金资助项目(62472267)
山西省应用基础研究计划资助项目(20210302123444,20210302123455)
中国高校产学研创新基金资助项目(2021FNA02009)
国家自然科学基金资助项目(61702315,61906115,62472267)
同济大学嵌入式系统与服务计算教育部重点实验室开放课题(ESSCKF2021-04)
山西省重点研发计划资助项目(201903D421003)
国家重点研发计划资助项目(2018YFB1800401)
出版信息
DOI: 10.19734/j.issn.1001-3695.2024.04.0212
出版期卷: 《计算机应用研究》 印刷出版, 2025年第42卷 第2期
所属栏目: 信息安全技术
出版页码: 582-591
文章编号: 1001-3695(2025)02-036-0582-10
发布历史
[2025-02-05] 印刷出版
引用本文
耿海军, 蔚超, 胡治国, 等. 基于EMO-GAN的恶意URL检测框架 [J]. 计算机应用研究, 2025, 42 (2): 582-591. (Geng Haijun, Wei Chao, Hu Zhiguo, et al. Malicious URL detection framework based on EMO-GAN [J]. Application Research of Computers, 2025, 42 (2): 582-591. )
关于期刊

- 计算机应用研究 月刊
- Application Research of Computers
-
刊号
ISSN 1001-3695
CN 51-1196/TP
《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。
《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。
《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。
收录和评价
- 第二届国家期刊奖百种重点期刊
- 中国期刊方阵双效期刊
- 全国中文核心期刊(北大2023年版)
- 中国科技核心期刊
- 中国科学引文数据库(CSCD)来源期刊
- RCCSE中国核心学术期刊
- 中国计算机学会会刊
- 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
- 中国科技期刊精品数据库全文来源期刊
- 中国学术期刊综合评价数据库来源期刊
- 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
- 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
- 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
- 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
- 英国《科学文摘》(INSPEC)来源期刊
- 《日本科学技术振兴机构数据库》(JST)来源期刊
- 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
- 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
- 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
- 波兰《哥白尼索引》(IC)来源期刊
- 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊