基于Relief和BFO的并行支持向量机算法
Parallel SVM algorithm based on Relief and bacterial foraging optimization algorithm
1. 江西理工大学 信息工程学院, 江西 赣州 341000
2. 赣南科技学院 电子信息工程学院, 江西 赣州 341000
摘要
针对大数据环境下并行支持向量机(SVM)算法存在冗余数据敏感、参数选取困难、并行化效率低等问题,提出了一种基于Relief和BFO算法的并行SVM算法RBFO-PSVM。首先,基于互信息和Relief算法设计了一种特征权值计算策略MI-Relief,剔除数据集中的冗余特征,有效地降低了冗余数据对并行SVM分类的干扰;接着,提出了基于MapReduce的MR-HBFO算法,并行选取SVM的最优参数,提高SVM的参数寻优能力;最后,提出核聚类策略KCS,减小参与并行化训练的数据集规模,并提出改进CSVM反馈机制的交叉融合级联式并行支持向量机CFCPSVM,结合MapReduce编程框架并行训练SVM,提高了并行SVM的并行化效率。实验表明, RBFO-PSVM算法对大型数据集的分类效果更佳,更适用于大数据环境。
基金项目
国家自然科学基金资助项目(41562019)
国家重点研发计划资助项目(2018YFC1504705)
江西省教育厅科技资助项目(GJJ209407,GJJ209405)
出版信息
DOI: 10.19734/j.issn.1001-3695.2021.08.0314
出版期卷: 《计算机应用研究》 印刷出版, 2022年第39卷 第2期
所属栏目: 算法研究探讨
出版页码: 447-455
文章编号: 1001-3695(2022)02-021-0447-09
发布历史
[2021-12-17] 优先出版
[2022-02-05] 印刷出版
引用本文
胡健, 王祥太, 毛伊敏, 等. 基于Relief和BFO的并行支持向量机算法 [J]. 计算机应用研究, 2022, 39 (2): 447-455. (Hu Jian, Wang Xiangtai, Mao Yimin, et al. Parallel SVM algorithm based on Relief and bacterial foraging optimization algorithm [J]. Application Research of Computers, 2022, 39 (2): 447-455. )
关于期刊
- 计算机应用研究 月刊
- Application Research of Computers
-
刊号
ISSN 1001-3695
CN 51-1196/TP
《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。
《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。
《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。
收录和评价
- 第二届国家期刊奖百种重点期刊
- 中国期刊方阵双效期刊
- 全国中文核心期刊(北大2023年版)
- 中国科技核心期刊
- 中国科学引文数据库(CSCD)来源期刊
- RCCSE中国核心学术期刊
- 中国计算机学会会刊
- 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
- 中国科技期刊精品数据库全文来源期刊
- 中国学术期刊综合评价数据库来源期刊
- 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
- 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
- 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
- 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
- 英国《科学文摘》(INSPEC)来源期刊
- 《日本科学技术振兴机构数据库》(JST)来源期刊
- 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
- 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
- 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
- 波兰《哥白尼索引》(IC)来源期刊
- 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊