基于二重语义相关性图卷积网络的跨模态检索方法
Dual semantic correlation graph convolutional networks for cross-modal retrieval
1. 河北建筑工程学院 信息工程学院, 河北 张家口 075000
2. 河北大学 数学与信息科学学院, 河北 保定 071002
摘要
随着深度神经网络的不断发展,跨模态检索模型的构建也随之取得了长足的进步。以图卷积网络(GCN)为基础的跨模态检索方法可以较好地捕获数据的语义相关性,因此越来越受到人们的关注。但是,目前大部分研究多将标签之间和样本之间的相关性融入到跨模态表示当中,并没有考虑到标签集合之间的相关性对于跨模态检索模型性能的影响。在多标签场景下,标签集合之间的多标签相关性可以有效地描述对应样本之间的语义关系,因此充分发现多标签相关性并将其融入到跨模态表示中,对于提高跨模态检索模型的性能有着重要的意义。提出了一种基于二重语义相关性图卷积网络 (dual semantic correlation graph convolutional networks,DSCGCN) 的跨模态检索方法,该方法利用GCN自适应地发现标签之间和多标签之间的语义相关性,并将此二重语义相关性融入到样本公共表示中。此外,还提出了一种多标签相似性损失,用于使生成的样本公共表示相似性更接近于语义相似性。通过在NUS-WIDE、MIRFlickr-25K和MS-COCO三个数据集上的实验可以发现,由于引入了多标签语义相关性,DSCGCN可以获得令人满意的检索效果。
基金项目
河北省自然科学基金资助项目(F2022511001)
河北省高等学校科学技术研究项目(ZC2022070)
河北大学高层次人才科研启动项目(521100223212)
张家口市市级科技计划财政资助项目(2311010A)
张家口市2022年度基础研究专项资助项目(2221008A)
河北建筑工程学院2024年校级研究生创新基金资助项目(XY2024068)
出版信息
DOI: 10.19734/j.issn.1001-3695.2023.08.0370
出版期卷: 《计算机应用研究》 印刷出版, 2024年第41卷 第4期
所属栏目: 图形图像技术
出版页码: 1239-1246
文章编号: 1001-3695(2024)04-041-1239-08
发布历史
[2023-11-02] 优先出版
[2024-04-05] 印刷出版
引用本文
刘佳楠, 范晶晶, 赵建光, 等. 基于二重语义相关性图卷积网络的跨模态检索方法 [J]. 计算机应用研究, 2024, 41 (4): 1239-1246. (Liu Jianan, Fan Jingjing, Zhao Jianguang, et al. Dual semantic correlation graph convolutional networks for cross-modal retrieval [J]. Application Research of Computers, 2024, 41 (4): 1239-1246. )
关于期刊
- 计算机应用研究 月刊
- Application Research of Computers
-
刊号
ISSN 1001-3695
CN 51-1196/TP
《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。
《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。
《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。
收录和评价
- 第二届国家期刊奖百种重点期刊
- 中国期刊方阵双效期刊
- 全国中文核心期刊(北大2023年版)
- 中国科技核心期刊
- 中国科学引文数据库(CSCD)来源期刊
- RCCSE中国核心学术期刊
- 中国计算机学会会刊
- 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
- 中国科技期刊精品数据库全文来源期刊
- 中国学术期刊综合评价数据库来源期刊
- 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
- 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
- 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
- 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
- 英国《科学文摘》(INSPEC)来源期刊
- 《日本科学技术振兴机构数据库》(JST)来源期刊
- 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
- 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
- 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
- 波兰《哥白尼索引》(IC)来源期刊
- 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊