基于卷积胶囊编码器和多尺度局部特征共现的图像分割网络
Medical image segmentation network based on convolution capsule encoder and multi-scale local feature co-occurrence
上海理工大学 光电信息与计算机工程学院, 上海 200093
摘要
U-Net在图像分割领域取得了巨大成功,然而卷积和下采样操作导致部分位置信息丢失,全局和长距离的语义交互信息难以被学习,并且缺乏整合全局和局部信息的能力。为了提取丰富的局部细节和全局上下文信息,提出了一个基于卷积胶囊编码器和局部共现的医学图像分割网络MLFCNet (network based on convolution capsule encoder and multi-scale local feature co-occurrence)。在U-Net基础上引入胶囊网络模块,学习目标位置信息、局部与全局的关系。同时利用提出的注意力机制保留网络池化层丢弃的信息,并且设计了新的多尺度特征融合方法,从而捕捉全局信息并抑制背景噪声。此外,提出了一种新的多尺度局部特征共现算法,局部特征之间的关系能够被更好地学习。在两个公共数据集上与九种方法进行了比较,相比于性能第二的模型,该方法的mIoU在肝脏医学图像中提升了4.7%,Dice系数提升了1.7%。在肝脏医学图像和人像数据集上的实验结果表明,在相同的实验条件下,提出的网络优于U-Net和其他主流的图像分割网络。
关键词
基金项目
上海市自然科学基金资助项目(22ZR1443700)
出版信息
DOI: 10.19734/j.issn.1001-3695.2023.07.0352
出版期卷: 《计算机应用研究》 印刷出版, 2024年第41卷 第4期
所属栏目: 图形图像技术
出版页码: 1264-1269
文章编号: 1001-3695(2024)04-045-1264-06
发布历史
[2023-11-01] 优先出版
[2024-04-05] 印刷出版
引用本文
秦辰栋, 王永雄, 张佳鹏. 基于卷积胶囊编码器和多尺度局部特征共现的图像分割网络 [J]. 计算机应用研究, 2024, 41 (4): 1264-1269. (Qin Chendong, Wang Yongxiong, Zhang Jiapeng. Medical image segmentation network based on convolution capsule encoder and multi-scale local feature co-occurrence [J]. Application Research of Computers, 2024, 41 (4): 1264-1269. )
关于期刊
- 计算机应用研究 月刊
- Application Research of Computers
-
刊号
ISSN 1001-3695
CN 51-1196/TP
《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。
《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。
《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。
收录和评价
- 第二届国家期刊奖百种重点期刊
- 中国期刊方阵双效期刊
- 全国中文核心期刊(北大2023年版)
- 中国科技核心期刊
- 中国科学引文数据库(CSCD)来源期刊
- RCCSE中国核心学术期刊
- 中国计算机学会会刊
- 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
- 中国科技期刊精品数据库全文来源期刊
- 中国学术期刊综合评价数据库来源期刊
- 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
- 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
- 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
- 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
- 英国《科学文摘》(INSPEC)来源期刊
- 《日本科学技术振兴机构数据库》(JST)来源期刊
- 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
- 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
- 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
- 波兰《哥白尼索引》(IC)来源期刊
- 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊