少样本文本分类的多任务原型网络
Multiple-task prototypical network for few-shot text classification
华东理工大学 信息科学与工程学院, 上海 200237
摘要
少样本文本分类中,原型网络对语义利用不足、可迁移特征挖掘不够,导致模型泛化能力不强,在新任务空间中分类性能不佳。从模型结构、编码网络、度量网络等角度提高模型泛化性,提出多任务原型网络(multiple-task prototypical network,MTPN)。结构上,基于原型网络度量任务增加辅助分类任务约束训练目标,提高了模型的语义特征抽取能力,利用多任务联合训练,获得与辅助任务更相关的语义表示。针对编码网络,提出LF-Transformer编码器,使用层级注意力融合底层通用编码信息,提升特征的可迁移性。度量网络使用基于BiGRU的类原型生成器,使类原型更具代表性,距离度量更加准确。实验表明,MTPN在少样本文本情感分类任务中取得了91.62%的准确率,比现有最佳模型提升了3.5%以上;在新领域的情感评论中,基于五条参考样本,模型对查询样本可获得超过90%的分类准确率。
出版信息
DOI: 10.19734/j.issn.1001-3695.2021.11.0463
出版期卷: 《计算机应用研究》 印刷出版, 2022年第39卷 第5期
所属栏目: 算法研究探讨
出版页码: 1368-1373
文章编号: 1001-3695(2022)05-014-1368-06
发布历史
[2021-12-24] 优先出版
[2022-05-05] 印刷出版
引用本文
于俊杰, 程华, 房一泉. 少样本文本分类的多任务原型网络 [J]. 计算机应用研究, 2022, 39 (5): 1368-1373. (Yu Junjie, Cheng Hua, Fang Yiquan. Multiple-task prototypical network for few-shot text classification [J]. Application Research of Computers, 2022, 39 (5): 1368-1373. )
关于期刊
- 计算机应用研究 月刊
- Application Research of Computers
-
刊号
ISSN 1001-3695
CN 51-1196/TP
《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。
《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。
《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。
收录和评价
- 第二届国家期刊奖百种重点期刊
- 中国期刊方阵双效期刊
- 全国中文核心期刊(北大2023年版)
- 中国科技核心期刊
- 中国科学引文数据库(CSCD)来源期刊
- RCCSE中国核心学术期刊
- 中国计算机学会会刊
- 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
- 中国科技期刊精品数据库全文来源期刊
- 中国学术期刊综合评价数据库来源期刊
- 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
- 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
- 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
- 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
- 英国《科学文摘》(INSPEC)来源期刊
- 《日本科学技术振兴机构数据库》(JST)来源期刊
- 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
- 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
- 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
- 波兰《哥白尼索引》(IC)来源期刊
- 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊