PNet:融合注意力机制的多级低照度图像增强网络
PNet:multi-level low-illumination image enhancement network based on attention mechanism
1. 广州软件学院 软件工程系, 广州 510990
2. 华南理工大学 a. 计算机科学与工程学院; b. 机器学习与数据挖掘团队; c. 广东省计算机网络重点实验室, 广州 510641
摘要
低照度图像存在亮度低、噪声伪影、细节丢失、颜色失真等退化问题,使得低照度图像增强成为一个多目标增强任务。现有多数增强算法不能很好地在多个增强目标上取得综合的性能,对此,提出PNet——融合注意力机制的多级低照度图像增强网络模型,通过构建多级串联增强任务子网,结合注意力机制设计多通道信息融合模块进行有效特征筛选及记忆,网络以序列方式处理图像流,协同渐进式完成图像全局自适应亮度提升、噪声伪影抑制、细节恢复、颜色矫正等多任务。此外,通过与现有主流算法进行定量及定性分析对比,结果显示该方法能实现自适应图像亮度增强、细节对比度提升,增强后图像整体亮度自然,没有明显光晕及伪影且色彩较丰富真实,在PSNR、SSIM、RMSE指标中较次优算法分别提升0.229、0.112、0.335。实验结果表明,该方法在低照度图像增强的多目标任务上取得了综合较优秀的表现,具有一定的应用价值。
基金项目
2018年度广东省普通高校重点科研平台和科研项目(2018KQNCX395, 2018KQNCX394)
2021年度广东省普通高校特色创新(自然科学)项目(2021KTSCX160,2021KTSCX161)
出版信息
DOI: 10.19734/j.issn.1001-3695.2021.09.0384
出版期卷: 《计算机应用研究》 印刷出版, 2022年第39卷 第5期
所属栏目: 图形图像技术
出版页码: 1579-1585
文章编号: 1001-3695(2022)05-051-1579-07
发布历史
[2021-11-22] 优先出版
[2022-05-05] 印刷出版
引用本文
杨微, 张志威, 成海秀. PNet:融合注意力机制的多级低照度图像增强网络 [J]. 计算机应用研究, 2022, 39 (5): 1579-1585. (Yang Wei, Zhang Zhiwei, Cheng Haixiu. PNet:multi-level low-illumination image enhancement network based on attention mechanism [J]. Application Research of Computers, 2022, 39 (5): 1579-1585. )
关于期刊
- 计算机应用研究 月刊
- Application Research of Computers
-
刊号
ISSN 1001-3695
CN 51-1196/TP
《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。
《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。
《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。
收录和评价
- 第二届国家期刊奖百种重点期刊
- 中国期刊方阵双效期刊
- 全国中文核心期刊(北大2023年版)
- 中国科技核心期刊
- 中国科学引文数据库(CSCD)来源期刊
- RCCSE中国核心学术期刊
- 中国计算机学会会刊
- 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
- 中国科技期刊精品数据库全文来源期刊
- 中国学术期刊综合评价数据库来源期刊
- 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
- 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
- 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
- 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
- 英国《科学文摘》(INSPEC)来源期刊
- 《日本科学技术振兴机构数据库》(JST)来源期刊
- 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
- 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
- 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
- 波兰《哥白尼索引》(IC)来源期刊
- 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊