根据国家网信办相关规定和要求,《计算机应用研究》编辑部网站域名更换为arocmag.cn,原域名 arocmag.com 将于2024年12月31日后停用。

基于深度学习的ADHD儿童和正常儿童脑电信号分类研究

Study of EEG signal classification based on deep learning for ADHD children and normal children
田博帆1,2
严瀚莹1,2
王苏弘3
邹凌1,2
1. 常州大学 信息科学与工程学院, 江苏 常州 213164
2. 常州市生物医学信息技术重点实验室, 江苏 常州 213164
3. 苏州大学附属第三医院 脑科学研究中心, 江苏 常州 213003

摘要

针对注意缺陷多动障碍(attention deficit hyperactivity disorder,ADHD)儿童和正常儿童的分类问题,实验采用经典干扰控制任务范式对两类儿童的事件相关电位(event-related potential,ERP)进行了研究,旨在通过ERP特征实现其分类。实验首次使用长短期记忆(long-short term memory,LSTM)方法分析两类儿童前额叶与顶枕叶脑区最佳电极(p<0.05)潜伏期(200~450 ms)的脑电信号,并自动学习和分类其ERP特征。相比常规分类方法,LSTM方法的分类率略高,可达95.78%。研究结果表明LSTM方法有助于ADHD儿童脑电信号的分类,为ADHD儿童个体诊断技术提供了一种新思路。

基金项目

江苏省科技厅社发发展项目(BE2018638)
常州市科技项目(CE20175043)
江苏省“333工程”人才项目

出版信息

DOI: 10.19734/j.issn.1001-3695.2017.08.0870
出版期卷: 《计算机应用研究》 印刷出版, 2019年第36卷 第2期
所属栏目: 算法研究探讨
出版页码: 347-350
文章编号: 1001-3695(2019)02-007-0347-04

发布历史

[2019-02-05] 印刷出版

引用本文

田博帆, 严瀚莹, 王苏弘, 等. 基于深度学习的ADHD儿童和正常儿童脑电信号分类研究 [J]. 计算机应用研究, 2019, 36 (2): 347-350. (Tian Bofan, Yan Hanying, Wang Suhong, et al. Study of EEG signal classification based on deep learning for ADHD children and normal children [J]. Application Research of Computers, 2019, 36 (2): 347-350. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊