基于动态加权PPI网络的关键蛋白质识别算法
Novel algorithm prediction of essential proteins based on dynamic weighted PPI network
江西理工大学 信息工程学院, 江西 赣州 341000
摘要
与静态PPI网络相比,动态PPI网络更能体现蛋白质之间相互作用的真实情况,并有效降低PPI网络中的假阴性。现有的关键蛋白质预测方法主要应用在静态PPI网络,忽视了PPI网络的动态特性。为有效预测关键蛋白质,利用基因表达数据提取蛋白质的动态信息,再结合静态PPI网络构建动态PPI网络,然后引入GO术语对网络加权,并基于动态加权PPI网络提出一种新的预测方法——DWE。该方法以蛋白质在动态网络中的动态加权边之和与蛋白质在动态网络中出现的次数的比值衡量蛋白质在网络中的关键性。实验结果表明动态加权PPI网络有助于提高关键蛋白质的预测精度,且DWE方法优于其他几种关键蛋白质预测方法。
基金项目
国家自然科学基金资助项目(61662028,41362015)
江西省教育厅重点科技项目(GJJ161566)
出版信息
DOI: 10.19734/j.issn.1001-3695.2017.08.0707
出版期卷: 《计算机应用研究》 印刷出版, 2019年第36卷 第2期
所属栏目: 算法研究探讨
出版页码: 367-370,379
文章编号: 1001-3695(2019)02-012-0367-04
发布历史
[2019-02-05] 印刷出版
引用本文
杨书新, 鲁纪华, 汤达荣. 基于动态加权PPI网络的关键蛋白质识别算法 [J]. 计算机应用研究, 2019, 36 (2): 367-370,379. (Yang Shuxin, Lu Jihua, Tang Darong. Novel algorithm prediction of essential proteins based on dynamic weighted PPI network [J]. Application Research of Computers, 2019, 36 (2): 367-370,379. )
关于期刊
- 计算机应用研究 月刊
- Application Research of Computers
-
刊号
ISSN 1001-3695
CN 51-1196/TP
《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。
《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。
《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。
收录和评价
- 第二届国家期刊奖百种重点期刊
- 中国期刊方阵双效期刊
- 全国中文核心期刊(北大2023年版)
- 中国科技核心期刊
- 中国科学引文数据库(CSCD)来源期刊
- RCCSE中国核心学术期刊
- 中国计算机学会会刊
- 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
- 中国科技期刊精品数据库全文来源期刊
- 中国学术期刊综合评价数据库来源期刊
- 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
- 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
- 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
- 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
- 英国《科学文摘》(INSPEC)来源期刊
- 《日本科学技术振兴机构数据库》(JST)来源期刊
- 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
- 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
- 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
- 波兰《哥白尼索引》(IC)来源期刊
- 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊